Phenonaut
Contents:
API documentation
Subpackages
phenonaut.data package
phenonaut.integration package
phenonaut.metrics package
phenonaut.output package
phenonaut.packaged_datasets package
phenonaut.predict package
Subpackages
Submodules
phenonaut.predict.optuna_functions module
phenonaut.predict.predict_utils module
phenonaut.predict.predictor_dataclasses module
phenonaut.predict.profile module
Module contents
phenonaut.transforms package
Submodules
phenonaut.errors module
phenonaut.phenonaut module
phenonaut.utils module
phenonaut.workflow module
Module contents
User guide
Publication examples
Workflow mode
Phenonaut
phenonaut package
phenonaut.predict package
phenonaut.predict.default_predictors package
phenonaut.predict.default_predictors.pytorch_models package
View page source
phenonaut.predict.default_predictors.pytorch_models package
Submodules
phenonaut.predict.default_predictors.pytorch_models.dave module
class
phenonaut.predict.default_predictors.pytorch_models.dave.
DAVE
(
batch_size
=
1024
,
learning_rate
=
0.001
,
epochs
=
10
,
num_hidden_layers
=
1
,
seed
:
int
|
None
=
None
)
Bases:
object
fit
(
X
,
y
)
loss_function
(
recon_XA
,
recon_XB
,
XA
,
XB
,
muA
,
muB
,
logvarA
,
logvarB
)
predict
(
X
)
phenonaut.predict.default_predictors.pytorch_models.multiregressor_nn module
class
phenonaut.predict.default_predictors.pytorch_models.multiregressor_nn.
MultiRegressorNN
(
batch_size
=
128
,
learning_rate
=
0.001
,
epochs
=
100
,
num_hidden_layers
=
1
,
hidden_layer_sizes
:
list
[
int
]
|
None
=
None
,
use_optimizer
:
str
=
'ADAM'
,
seed
:
int
|
None
=
None
)
Bases:
object
fit
(
X
,
y
)
predict
(
X
)
Module contents